OAKLEY CROSSROADS STREAM & BUFFER RESTORATION

MONITORING REPORT (YEAR 2 OF 5)

Pitt County, North Carolina SCO Project Number 050659701 EEP Project Number 273

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Construction Completed: 2011 Data Collected: 2012 Submission Date: November 2012

Prepared by:

Stantec Consulting Services, Inc. 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

Table of Contents

1.0 E	Executive Summary / Project Abstract 1	l
2.0 N	Methodology	3
2.1	Morphological Parameters and Channel Stability	3
2.1.1	Dimension	3
2.1.1	Pattern and Profile	
2.1.2	Substrate	
2.1.1	Sediment Transport	3
2.2	Vegetation	3
2.3	Hydrology	1
2.3.1	Wetland	1
2.3.2	Stream	1
3.0 R	References5	5
4.0 A	Appendices	7
1	Appendix A – Project Vicinity Map and Background Tables	
1	Appendix B – Visual Assessment Data	
1	Appendix C – Vegetation Plot Data	
1	Appendix D – Stream Survey Data	
1	Appendix E – Hydrologic Data	

The overall goal of the Oakley restoration project was to improve water quality and wildlife habitat by restoring a stable stream and riparian buffer system to the project site. The objectives of the project were to restore stream stability and improve aquatic habitat, restore riparian buffer along the stream channel, preserve riverine wetlands, establish a wildlife corridor, divert an unbuffered agricultural ditch system from the stream channel to an irrigation pond, and establish native vegetation within the permanent conservation easement. The project included 3,789 linear feet of stream restoration and 329 linear feet of stream enhancement. Priority II stream restoration involved restoring riffle/pool sequences, the installation of structures, and floodplain grading to improve floodplain connectivity and provide diverse instream habitat. Enhancement II stream restoration involved the planting of native hardwood trees and shrubs. Also, native riparian buffer planting took place on over 18 acres of the site, and an additional 1.37 acres of wetland was preserved. The project will result in 3,931 stream mitigation units (SMUs), 16.9 acres of buffer mitigation units (BMUs), and 0.27 acres of wetland mitigation units (WMUs).

The Monitoring Year 2 [MY2] stem counts within each of the nine (9) vegetative monitoring plots are included in Tables 7 and 9 in Appendix C. Located within the Tar-Pamlico River basin, this project was instituted prior to October 11, 2007 and is therefore eligible for riparian buffer restoration credit up to 200 feet from the top of bank of all perennial and intermittent waterways within the conservation easement area. As such, the vegetative monitoring plots have been assessed for the vegetation success criteria for both buffer (320 planted trees/acre) and streams (MY3 interim criteria of 320 woody stems/acre). All nine vegetative monitoring plots met the vegetation success criteria for riparian buffers. Of the five plots within the 50-foot stream buffer, all are currently meeting the vegetation success criteria for streams. Ecosystems Grading Solutions, Inc. planted an additional 5,000 bare roots and livestakes at the Oakley site on January 31, 2012.

Several large areas of *Murdannia keisak* (marsh dayflower), observed in 2011, have expanded in and along the banks of stream throughout Section 1 in 2012. Areas where *Murdannia keisak* was most abundant include: between Station 0+50 and 1+50, between Station 3+50 and 7+00, near Station 21+50, and near Station 28+50. Currently, these areas of *Murdannia keisak* do not pose a threat to native vegetation establishment or stream stability, but they will continue to be monitored during future field visits to document any changes. In addition, the streambanks on both left and right bank were observed to be bare below the Briley culvert, between Station 38+25 and 39+00. The rest of the site appears to have benefitted tremendously from the supplemental planting in 2012, as there were no additional bare areas observed on the project site. Overall the planted woody vegetation has become established and has excellent vigor.

Sections 1, 2, and 3 of the Oakley restoration project were observed to be in generally stable condition. The channel's profile and cross-section adjusted only minimally from baseline conditions. The channel has good connection to its floodplain. Evidence of bankfull overflow was observed during the stream and vegetation monitoring on October 4th and 10th, 2012. Evidence included the presence of wrack lines and cork above the bankfull line on the crest gauge. The dimension, pattern, and profile survey for MY2 conditions for Section 1 and Section 2 were analyzed, and the current shear stress and stream power are consistent with the design intent to reduce sediment transport.

An area of aggradation, noted in 2011, was again observed below the upstream culvert between Station 0+00 and 0+60. Additionally, one area of minor bed downcutting was observed between Station 35+00 and 37+00. The structures in this area are still providing grade control and will help the area reach an equilibrium. The areas of aggradation and bed downcutting do not currently threaten the stability of the stream. These areas will continue to be monitored during future field visits to document any changes. A few relict nutria burrows were also observed between Station 4+40 and 10+00, but the livestakes are maintaining bank stability and these areas do not threaten the stability of the stream. *Callitriche heterophylla* (water starwort), a non-invasive species, was again observed in several areas along all three sections of the stream. This aquatic plant was also noted to be present in monitoring year 1 and prior to the construction of the restoration project. Neither the nutria nor the water starwort currently threatens the stability of the restored stream. These issues will continue to be monitored during future field visits to document any changes.

As per NCEEP's request the vegetative cover of brush mattresses along the entire stream length was also visually assessed. Several areas were observed where brush mattresses had less than the required 80% vegetative cover. These areas include brush mattresses located along the left bank on the meander bend near Station 28+00 and between Stations 36+00 and 36+50, a drastic improvement from 2011. Refer to Figure 2 in Appendix A for the location of these brush mattresses.

The wetland preservation areas were also visually assessed during the vegetation monitoring. No issues were observed in these areas and existing vegetation appears to be in good condition. These areas will continue to be monitored during future field visits.

Summary information, data, and statistics related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 Methodology

Channel stability and vegetation survival were monitored on the project site. Post-restoration monitoring will be conducted for a minimum of five years or until the success criteria are met following the completion of construction to document project success. The Monitoring Year 2 survey was completed using survey grade GPS on October 10, 2012.

2.1 MORPHOLOGICAL PARAMETERS AND CHANNEL STABILITY

2.1.1 Dimension

Dimensional characteristics were monitored at 7 permanent cross-sections (4 riffles, 3 pools) along Section 1 and Section 2. Survey data included points measured at all breaks in slope including top of bank, bankfull, inner berm, edge of water, and thalweg. Dimensional characteristics were compared to baseline conditions. All monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type. Stream channel stability and geomorphic monitoring for Section 3 was documented visually. Natural variability is expected, however the system should not experience trends toward excessive increasing bank erosion, channel degradation, or channel aggradation.

2.1.1 Pattern and Profile

The entire longitudinal profile of Section 1 and Section 2 was surveyed. Stationing from the as-built survey was used. The longitudinal profiles should show that the bedform features are remaining stable. The pools should remain deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools.

2.1.2 Substrate

Since the streams throughout the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore, as per NCEEP, bed material analyses were not undertaken for this project.

2.1.1 Sediment Transport

As mentioned previously, additional sediment transport evaluations will not be undertaken during the five-year monitoring period. However, the dimension, pattern, and profile survey for MY2 conditions for Section 1 and Section 2 were analyzed to determine whether the current sediment competency and capacity is consistent with the design.

2.2 VEGETATION

The Carolina Vegetation Survey (CVS) Level 2 methodology was utilized to sample vegetation on October 4, 2012. Nine 100-square meter CVS plots have been established within the project area. In each plot, four plot corners have been permanently located with rebar. Volunteer plant species (Level 2) were recorded this year and will only be considered in vegetative success determinations for the stream portion of this project. As such, volunteer plant species will be recorded for subsequent monitoring years in

vegetation plots located within the 50 foot buffer of the restored stream. Refer to Figure 2 in Appendix A. In all vegetation plots species composition, density, and survival of the planted vegetation was monitored.

This project is generating both stream and riparian buffer mitigation assets. Vegetation success for these assets is measured in two ways. Stream mitigation units (SMUs) require 260 planted and volunteer native hardwood stems (trees and shrubs) per acre for a minimum of 5 years. Buffer mitigation units (BMUs) require 320 planted native hardwood stems (trees only) per acre for a minimum of 5 years. In accordance with North Carolina Division of Water Quality Administrative Code 15A NCAC 02B.0260 (TAR-PAMLICO RIVER BASIN, *Mitigation Program for Protection and Maintenance of Existing Riparian Buffers*) '[planted vegetation] shall include a minimum of at least two native hardwood tree species planted at a density to provide 320 trees per acre at maturity." Also, for SMUs and BMUs, the buffer must be at least 50-feet wide on both sides of the channel.

The interim measure of vegetative success for SMUs for the site will be the survival of at least 320 3-year old stems per acre at the end of year three of the monitoring period and 280 4-year old stems per acre at the end of year four monitoring period. There are no interim measures of vegetative success for BMUs.

2.3 HYDROLOGY

2.3.1 Wetland

Neither wetland restoration or enhancement credit is being sought for this project. Existing jurisdictional wetlands as depicted in Figure 2 in Appendix A are being preserved. The wetland preservation areas are visually assessed during each monitoring year.

2.3.2 Stream

One crest gauge has been installed onsite and is located near Cross-section 3. Each visit to the site included documentation of the highest stage for the monitoring interval and a reset of the device. Other indications of bankfull flow including the presence of wrack lines, sediment, or flooding were also monitored, and their presence was recorded and documented photographically. Refer to Figure 2 in Appendix A for the location of the crest gauge.

3.0References

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm)

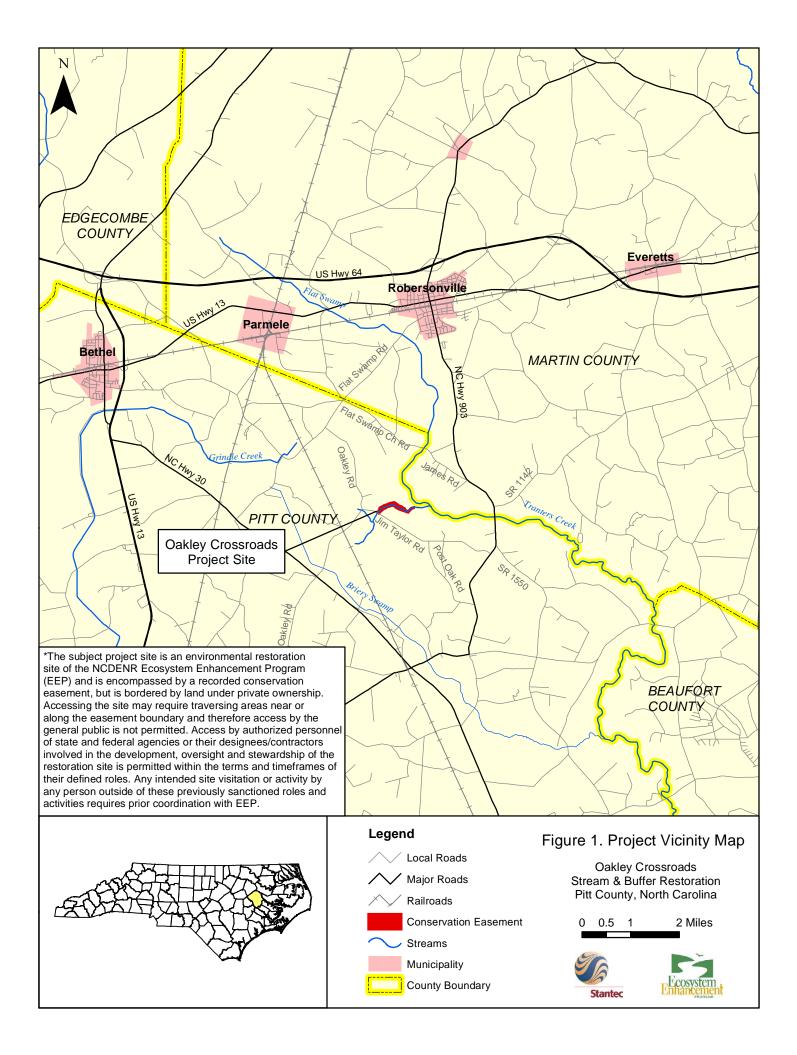
NCDWQ. 2004. Tar-Pamlico River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Raleigh, NC.

NCEEP. 2010. Procedural Guidance and Content Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.3, January 15, 2010.

NCEEP. 2008. Mitigation Plan Document – Format Data Requirements, and Content Guidelines. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 2.0, March 27, 2008.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley, 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR, Raleigh, North Carolina.


United States Army Corps of Engineers – Wilmington District, North Carolina Division of Water Quality, United States Environmental Protection Agency – Region IV, Natural Resources Conservation Service, North Carolina Wildlife Resources Commission. 2003. Stream Mitigation Guidelines.

4.0Appendices

- Appendix A Project Vicinity Map and Background Tables
- Appendix B Visual Assessment Data
- Appendix C Vegetation Plot Data
- Appendix D Stream Survey Data
- Appendix E Hydrologic Data

Appendix A. Project Vicinity Map and Background Tables

- Figure 1 Table 1a.b.
- Vicinity Map and DirectionsProject Restoration Components
- Project Activity and Reporting History
 Project Contacts
 Project Attribute Table 2
- Table 3
- Table 4

	Table 1a. Project Components and Mitigation Credits									
			Oakle	ey Crossroad	s Stream and	l Buffer Res	storation (E	EP# 273)		
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing/ Location	Mitigation Ratio	Mitigation Units	BMP Elements ¹	Comment	
Section 1	2,950	R	PII	3,637	00+00 to 37+98.64	1:1	3,637		Ten foot width of ford crossing removed from total length. 152 LF of restored stream with <50' buffer separated into line item below. Total restoration footage 3,637 LF.	
Section 1, <50 ft buffer	152	R	PII	152	~33+00 to ~37+00	1:1	152		152 LF of restored stream has <50' buffer on right bank. Mitigation ratio is likely to change once DWQ publishes reduced SMU calculation for areas with <50 ft of buffer.	
Section 2	40	Е	EII	40	~38+39 to ~38+79	1.5:1	26.7		Enhancement - log structures, brush mattresses and planting.	
Section 3	289	Е	EII	289	downstream of Section 2	2.5:1	115.6		Enhancement - planting only.	
Riparian Buffer	n/a	R		735,728 sq ft	n/a	1:1	735,728		786,258 sq ft planted, 735,728 sq ft of which are eligible for mitigation credit. Area removed for areas with undiffuse flow, buffer width >200', or buffer width <50'.	
Wetlands	1.37	Р		1.37	n/a	5:1	0.27			

Table 1b. Component Summations										
Oakley Crossroads Stream and Buffer Restoration (EEP #273)										
estoration Stream Riparian Non-Ripar Upland Buffer										
Level	(lf)	Wetlar	nd (Ac)	(Ac)	(Ac)	(Ac)	BMP			
			Non-							
		Riverine	Riverine							
Restoration	3789					16.9				
Enhancement										
Enhancement I										
Enhancement II	329									
Creation										
Preservation		1.37								
HQ Preservation	HQ Preservation									
Totals (Feet/Acres)	4118	1.	37			16.9				
MU Totals	3,931.3	0.	27			16.9				

Non-Applicable

Table 2. Project Activity and Reporting History							
Oakley Crossroads Stream and Buffer Re	¥*	273)					
Elapsed Time Since Grading Complete:	18 months						
Elapsed Time Since Original Planting Complete:	18 months						
Number of Reporting Years ¹ :	2						
	Data Collection	Completion or					
Activity or Deliverable	Complete	Delivery					
Mitigation Plan	n/a	August 2006					
Final Design – Construction Plans	n/a	June 2010					
Construction (Grading complete)	n/a	May 2011					
Seeding	n/a	May 2011					
Planting	n/a	May 2011					
As-built (Year 0 Monitoring – baseline)	June 2011	July 2011					
Year 1 Monitoring	September 2011	November 2011					
Replanting (bareroots)	n/a	January 2012					
Year 2 Monitoring	October 2012	November 2012					
Year 3 Monitoring	n/a	n/a					
Year 4 Monitoring	n/a	n/a					
Year 5 Monitoring	n/a	n/a					
1 = Equals the number of reports or data points produced	excluding the basel	ine					

Table 3. Project Contacts Table					
Oakley Crossroads S	tream and Buffer Restoration (EEP# 273)				
Designer	Stantec Consulting Services, Inc.				
	801 Jones Franklin Rd, Ste 300, Raleigh, NC 27606				
Primary project design POC	Nathan Jean (970) 449-8615				
Construction Contractor	Ecosystems Grading Solutions, Inc.				
	6642 Roper Hollow Rd., Morganton, NC 28655				
Construction contractor POC	Bobby Koone (828) 584-3018				
Survey Contractor	Turner Land Surveying				
	3201 Glenridge Dr., Raleigh, NC 27604				
Survey contractor POC	Elizabeth and David Turner (919) 875-1378				
Planting Contractor	Bruton Natural Systems, Inc.				
	P.O. Box 1197, Remont, NC 27830				
Planting contractor POC	Charlie Bruton (919) 242-6555				
Seeding Contractor	Ecosystems Grading Solutions, Inc.				
	6642 Roper Hollow Rd., Morganton, NC 28655				
Contractor point of contact	Bobby Koone (828) 584-3018				
Seed Mix Sources	Green Resources				
Nursery Stock Suppliers	Southeastern Native Plant Nursery				
	South Carolina Super Tree Nursery				
	Natives				
Monitoring Performers	Stantec Consulting Services, Inc.				
	801 Jones Franklin Rd, Ste 300, Raleigh, NC 27606				
Stream Monitoring POC	Tim Taylor (980) 297-7669				
Vegetation Monitoring POC	Amber Coleman (919)865-7399				
Wetland Monitoring POC	n/a				

Table 4. Project B	aseline Informatio	on and Attributes						
Oakley Crossroads Str	eam and Buffer Re	storation (EEP# 273))					
Р	roject Information							
Project County		Pitt						
Project Area (acres)		26.6						
Project Coordinates (latitude and longitude) 35.76692, -77.269077								
Project Wate	ershed Summary I	nformation						
Physiographic Region		Coastal Plain						
River Basin		Tar-Pamlico						
USGS HUC for Project (14 digit)		030201030900	2					
NCDWQ Sub-basin for Project		03-03-06						
Project Drainage Area (sq mi)		1.71						
Project Drainage Area % Impervious		<1%						
CGIA Landuse Classification		Cropland and Pas	ture					
React	n Summary Informa	ation						
Reach name	Section 1	Section 2	Section 3					
Length of reach (linear feet)	3,799	40	289					
Valley classification	VIII	VIII	VIII					
Drainage area (acres)	1,014.5	1,014.7	1,092.3					
NCDWQ stream identification score	41	40.5	40.5					
NCDWQ classification	n/a	n/a	n/a					
Morphological description (stream type)	E5	F5	F5					
Evolutionary trend	E5	C5	C5					
Underlying mapped soils	Bladen	Pantego	Pantego					
Drainage class	Poorly drained	Very poorly drained	Very poorly drained					
Soil hydric status	Yes	Yes	Yes					
Slope	0-2%	0-1%	0-1%					
FEMA classification	Zone X	Zone X	Zone X					
Native vegetation community	Riverine bottom	land hardwood and mes	sic mixed hardwood forest					
Percent composition of exotic invasive vegetation	0%	0%	10%					
Wetlan	d Summary Inform	ation						
	vetland preservation							
Regu	llatory Considerati	ons						
Regulation	Applicable?	Resolved?	Supporting Documentation					
Waters of the United States - Section 404	Yes	Yes	USACE 404 permit					
Waters of the United States - Section 401	Yes	Yes	NCDWQ 401 permit					
Endangered Species Act	No	n/a	n/a					
Historic Preservation Act	No	n/a	n/a					
Coastal Zone Management Act (CZMA)/Coastal								
Aream Management Act (CAMA)	No	n/a	n/a					
FEMA Floodplain Compliance	No	n/a	n/a					

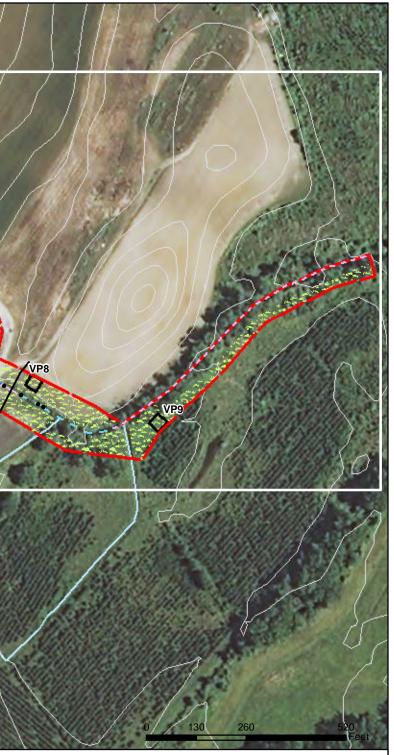
Appendix B. Visual Assessment

Figure 2	- Current Condition Plan View (3 Sheets)
Table 5	- Visual Stream Morphology Stability Assessment
Table 6	- Vegetation Condition Assessment
Photos	– Stream Stations (S1-S9)
Photos	– Vegetation Plots (V1-V19)

								X		$\int \int$
	A		VP4					P6		
	VP3		XS-3					VP7		K
	VP2 XS-2								$\langle \gamma \rangle$	
						V S		XS-4		P. P.
	51		5					A3-4	XS-5 XS-6	XS-
	S-1 Cross-section Pins	Latitude Lo	ongitude					X3-4	1	XS-
	51		ongitude -77.273188				B	A3-4	1	xs-
	s-1 Cross-section Pins	35.763932			4			A3-4	1	XS-
	S1 Cross-section Pins XS1 Left	35.763932 35.763715	-77.273188		1			A3-4	1	XS-
	S-1 Cross-section Pins XS1 Left XS1 Right XS2 Left	35.763932 35.763715 35.764464	-77.273188 -77.273168	-				X3-4	1	XS
	S-1 Cross-section Pins XS1 Left XS1 Right	35.763932 35.763715 35.764464 35.764192	-77.273188 -77.273168 -77.271851	1	gin Latitude I	Longitude		X3-4	1	XS-
Jim Taylor Rd	S-1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Left XS2 Right XS3 Left	35.763932 35.763715 35.764464 35.764192 35.764990	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211	Veg Plot Ori	gin Latitude I 35.763800	Longitude -77.272727			1	xs
	S1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right	35.763932 35.763715 35.764464 35.764192 35.764990 35.764655	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179	Veg Plot Ori VP1	35.763800 ·	-77.272727		A3-4	1	xs
	S-1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right XS3 Right XS4 Left	35.763932 35.763715 35.764464 35.764192 35.764990 35.764655 35.764086	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179 -77.266309	Veg Plot Ori VP1 VP2	35.763800 · 35.764217 ·	-77.272727 -77.272054			1	XS-
	S1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right	35.763932 35.763715 35.764464 35.764192 35.764990 35.764655 35.764086 35.764104	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179	Veg Plot Ori VP1 VP2 VP3	35.763800 · 35.764217 · 35.764550 ·	-77.272727 -77.272054 -77.272106			1	xs
	S1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right XS3 Left XS4 Left XS4 Right XS5 Left	35.76393235.76371535.76446435.76419235.76499035.76465535.76408635.76410435.763775	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179 -77.266309 -77.266513 -77.265646	Veg Plot Ori VP1 VP2 VP3 VP4	35.763800 · 35.764217 · 35.764550 · 35.764898 ·	-77.272727 -77.272054 -77.272106 -77.270463			1	
	S-1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right XS3 Left XS3 Right XS4 Left XS4 Right XS5 Left XS5 Right	35.763932 35.763715 35.764464 35.764192 35.764990 35.764655 35.764086 35.764104 35.763775 35.763637	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179 -77.266309 -77.266513 -77.265646 -77.265766	Veg Plot Ori VP1 VP2 VP3 VP4 VP5	35.763800 · 35.764217 · 35.764550 · 35.764898 · 35.764071 ·	-77.272727 -77.272054 -77.272106 -77.270463 -77.266808			1	XS-
	S1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right XS4 Left XS4 Right XS5 Left XS5 Right XS5 Right XS6 Left	35.763932 35.763715 35.764464 35.764192 35.764990 35.764655 35.764086 35.764104 35.763775 35.763637 35.763569	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179 -77.266309 -77.266513 -77.265646 -77.265766 -77.265016	Veg Plot Ori VP1 VP2 VP3 VP4 VP5 VP6	35.763800 · 35.764217 · 35.764550 · 35.764898 · 35.764071 · 35.764591 ·	-77.272727 -77.272054 -77.272106 -77.270463 -77.266808 -77.267194			1	
	S-1 Cross-section Pins XS1 Left XS1 Right XS2 Left XS2 Right XS3 Left XS3 Right XS3 Left XS3 Right XS4 Left XS4 Right XS5 Left XS5 Right	35.763932 35.763715 35.764464 35.764192 35.764655 35.764655 35.764086 35.764104 35.763775 35.763637 35.763569 35.763546	-77.273188 -77.273168 -77.271851 -77.271913 -77.270211 -77.270179 -77.266309 -77.266513 -77.265646 -77.265766	Veg Plot Ori VP1 VP2 VP3 VP4 VP5 VP6 VP7	35.763800 · 35.764217 · 35.764550 · 35.764898 · 35.764071 ·	-77.272727 -77.272054 -77.272106 -77.270463 -77.266808 -77.267194 -77.266611			1	

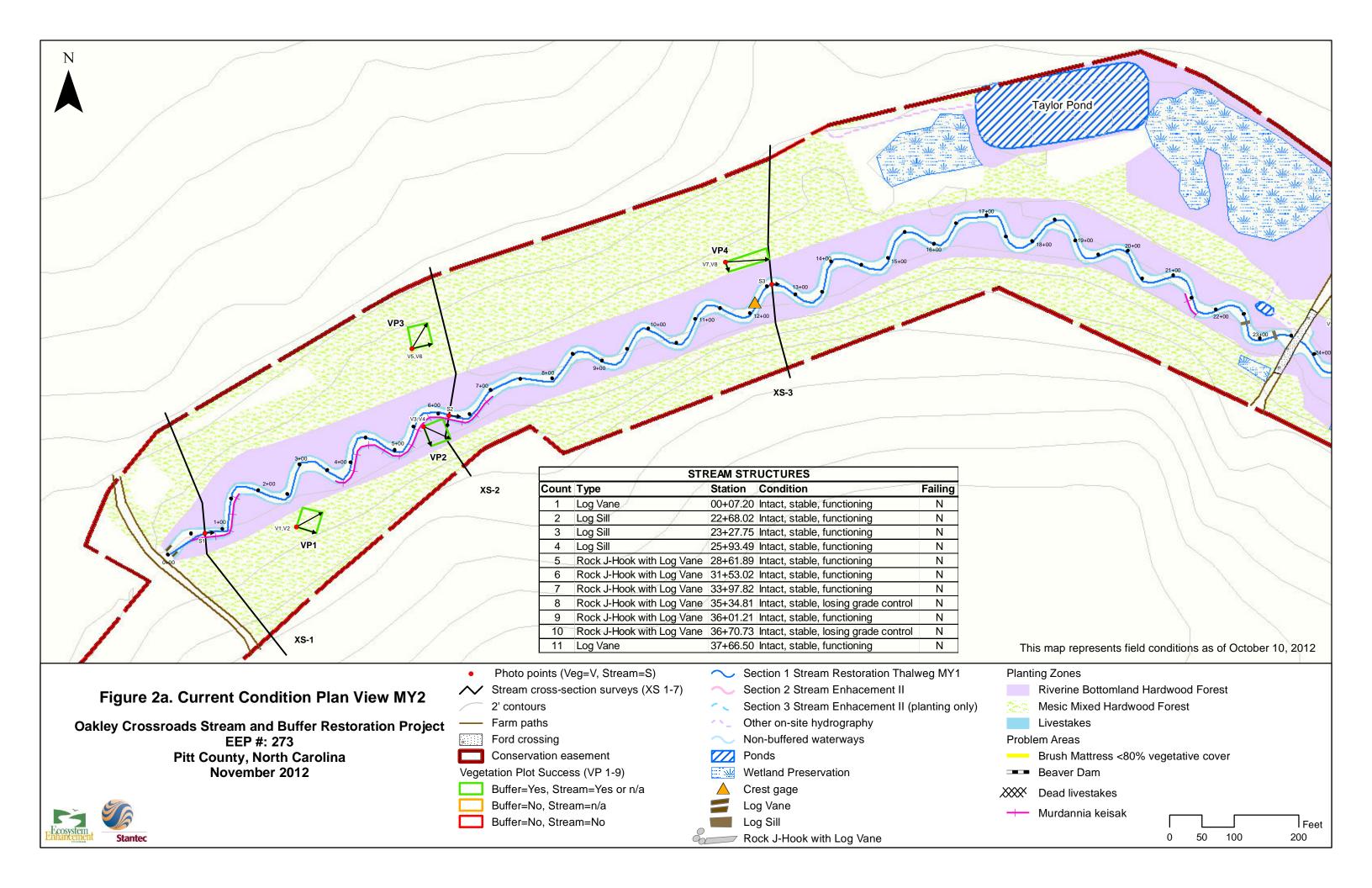
Figure 2. Current Condition Plan View MY2

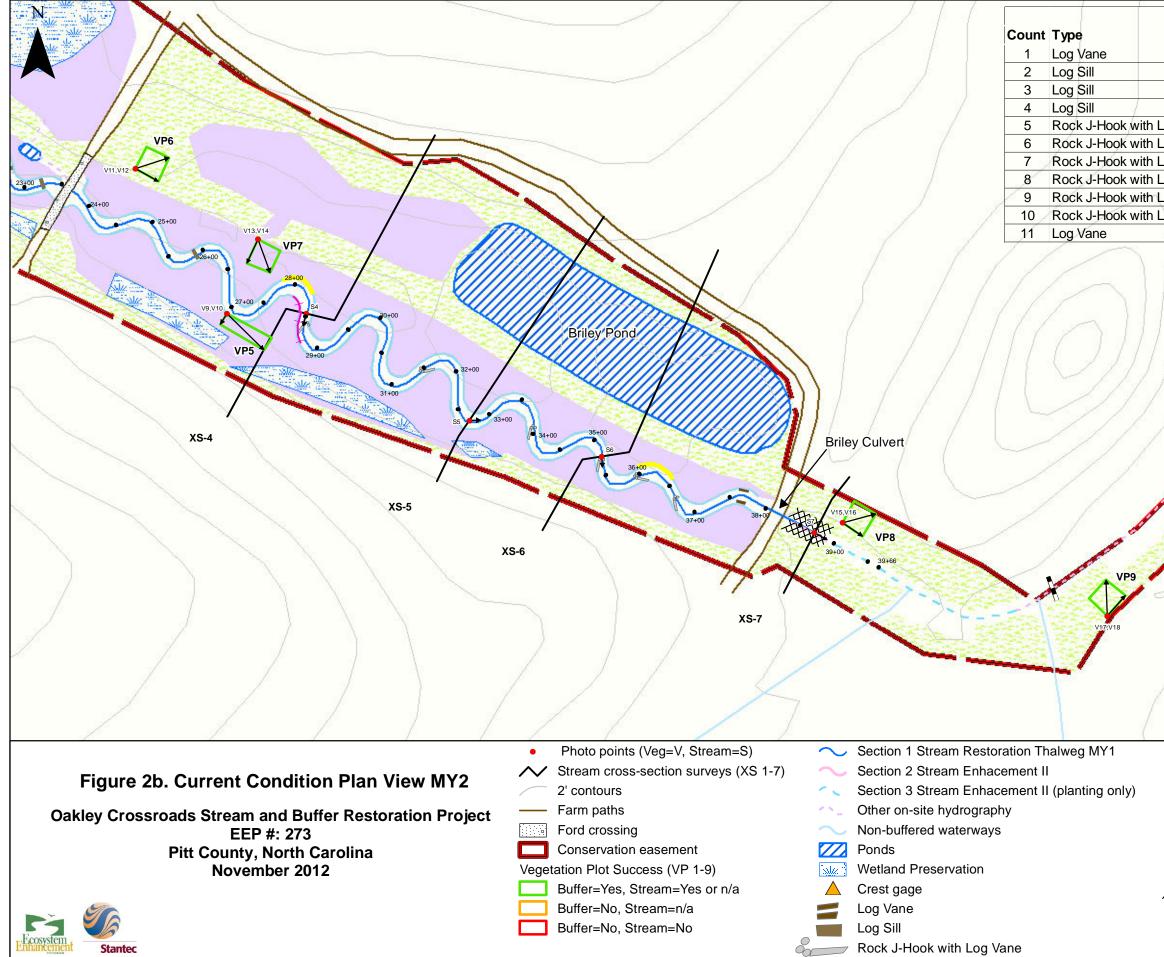
Oakley Crossroads Stream and Buffer Restoration Project EEP #: 273 Pitt County, North Carolina November 2012



Vegetation monitoring plots (VP 1-9)

- Stream cross-section surveys (XS 1-7)
- Conservation easement 2' contours


- ✓ Section 1 Stream Restoration Centerline MY1
- Section 2 Stream Enhacement II
- Section 3 Stream Enhacement II (planting only)
- Other on-site hydrography
- Non-buffered waterways
- Ponds
- Ford crossing
- Wetland preservation



Planting Zones

- Riverine Bottomland Hardwood Forest
- Mesic Mixed Hardwood Forest

	Station	Condition	Failing
1	00+07.20	Intact, stable, functioning	Ν
8	22+68.02	Intact, stable, functioning	N
7	23+27.75	Intact, stable, functioning	N
	25+93.49	Intact, stable, functioning	Ν
og Vane	28+61.89	Intact, stable, functioning	Ν
og Vane	31+53.02	Intact, stable, functioning	N
og Vane	33+97.82	Intact, stable, functioning	Ν
og Vane	35+34.81	Intact, stable, losing grade control	N
og Vane	36+01.21	Intact, stable, functioning	N
og Vane	36+70.73	Intact, stable, losing grade control	N
	37+66.50	Intact, stable, functioning	N
			-

This map represents field conditions as of October 10, 2012

Planti	ing Zones
	Riverine Bottomland Hardwood Forest
	Mesic Mixed Hardwood Forest
	Livestakes
Probl	em Areas
_	Brush Mattress <80% vegetative cover
	Beaver Dam
****	Dead livestakes
	Murdannia keisak Feet 0 50 100 200

Table 5 Visual Stream Morphology Stability Assessment Reach ID Reach 1

Assessed Length

Reach 1 3800

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	(Riffle and Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	N/A	56			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	56	56			100%			
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	56	56			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	56	56			100%			
	4. Thatweg Position	2. Thalweg centering at downstream of meander (Glide)	56	56			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
	_		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	11	11			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	11			82%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	11	11			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	11	11			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	11	11			100%			

	Table 6. Vegetation Condition As	sessment				
	Oakley Crossroads Stream and Buffer Res	toration (EEP	# 273)			
Planted acreage*	18					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of woody material	0.1 acres	none	0	0	0.0%
2. Low Stem Density	Woody stem densities below target levels for stem count success criteria	0.1 acres	none	0	Ŭ	
			Total	0	0	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year	0.25 acres	None	0	0	0.0%
5. Meas of 1001 Glowin Rates of Vigor	are obviously shan given the nonnoning year	0.25 deres	Total	~	÷	0.0%
Easement acreage	26.6					
		Mapping	CCPV	Number of	Combined	% of Easement
Vegetation Category	Definitions	Threshold	Depiction	Polygons	Acreage	Acreage
		1000 05	Magenta line with cross-	4 line segments	0.020	0.10
4. Invasive areas of concern	Murdannia keisak	1000 SF	hatches	~3' wide	0.039	0.1%
5. Encroachment areas		none	None	0	0	(

*Total planted acreage

Stream Station Photos

Photo Station S1 – Stream channel looking downstream at cross-section 1 Station 00+72 - Priority 2 (10/10/12 Year 2)

Photo Station S2 –Stream channel looking downstream at cross-section 2 Station 06+17 – Priority 2 (10/10/12 Year 2)

Photo Station S3 – Stream channel looking downstream at cross-section 3 Station 12+59 – Priority 2 (10/10/2012 Year 2)

Photo Station S4 – Stream channel looking downstream at cross-section 4 Station 28+46 – Priority 2 (10/10/2012 Year 2)

Photo Station S5 – Stream channel looking downstream at cross-section 5 Station 32+71 – Priority 2 (10/10/2012 Year 2)

Photo Station S6 – Stream channel looking downstream at cross-section 6 Station 35+24 – Priority 2 (10/10/2012 Year 2)

Photo Station S7 – Stream channel looking downstream at cross-section 7 Station 38+71 – Enhancement 2 (10/10/2012 Year 2)

Photo S8 – Evidence of bankfull overflow – wrackline (10/10/2012 Year 2)

Photo S9 – Evidence of bankfull overflow – cork above bankfull line in crest gauge (10/4/2012 Year 2)

Vegetation Plot Photos

Photo Station V1 - Veg Plot 1 looking southeast (10/4/2012 Year 2)

Photo Station V2 - Veg Plot 1 looking east (10/4/2012 Year 2)

Photo Station V3 - Veg Plot 2 looking south (10/4/2012 Year 2)

Photo Station V4 - Veg Plot 2 looking southeast (10/4/2012 Year 2)

Photo Station V5 - Veg Plot 3 looking east (10/4/2012 Year 2)

Photo Station V6 - Veg Plot 3 looking northeast (10/4/2012 Year 2)

Photo Station V7 - Veg Plot 4 looking south (10/4/2012 Year 2)

Photo Station V8 - Veg Plot 4 looking southeast (10/4/2012 Year 2)

Photo Station V9 - Veg plot 5 looking south (10/4/2012 Year 2)

Photo Station V10 - Veg plot 5 looking southeast (10/4/2012 Year 2)

Photo Station V11 - Veg plot 6 looking east (10/4/2012 Year 2)

Photo Station V12 - Veg plot 6 looking northeast (10/4/2012 Year 2)

Photo Station V13 - Veg plot 7 looking south (10/4/2012 Year 2)

Photo Station V14 - Veg plot 7 looking southeast (10/4/2012 Year 2)

Photo Station V15 - Veg plot 8 looking east (10/4/2012 Year 2)

Photo Station V16 - Veg plot 8 looking northeast (10/4/2012 Year 2)

Photo Station V17 - Veg plot 9 looking northeast (10/4/2012 Year 2)

Photo Station V18 - Veg plot 9 looking north (10/4/2012 Year 2)

Appendix C. Vegetation Plot Data

Table 7a,b.	 Vegetation Plot Mitigation Success Summary
Table 8	- CVS Vegetation Metadata
Table 9	- CVS Stem Count Total and Planted by Plot and Species

		Table 7. O	akley Cross	sroads (G) (#273)					
			Year 2 (04-0	ct-2012)						
		Vegetat	ion Plot Sumr	nary Inform	nation					
Dist #	Riparian Buffer	Stream/ Wetland Stems ²	Line Staling			T -+-1 ⁴	Unknown Growth			
Plot #	Stems ¹		Live Stakes	Invasives	Volunteers ³	Total ⁴	Form			
0001	19	21	0	0	2	23	0			
0002	16	16	0	0	124 7	140	0			
0003	21 19	21 20	0	0	5	28 25	0			
0004	19	10	0	0	4	14	0			
0006				0			0			
0008	<u>18</u> 11	<u>18</u> 11	0	0	<u>21</u> 1	39 12	0			
0007	11	11	0	0	0	12	0			
0009	17		0	0	26	40	0			
0009	14	n/a	0	0	20	40	0			
	Wetland/Stream Vegetation Totals (per acre)									
		Stream/			Success					
		Wetland			Criteria					
	Plot #	Stems ²	Volunteers ³	Total ⁴	Met?					
	0001	850	81	931	Yes					
	0002	647	5018	5666	Yes					
	0003	850	283	1133	Yes					
	0004	809	202	1012	Yes					
	0005	405	162	567	Yes					
	0006	728	850	1578	Yes					
	0007	445	40	486	Yes					
	0008	688	0	688	Yes					
	0009	n/a	1052	1619						
	Project Avg	678	854	1520	Yes					
		Ripariar	n Buffer Ve (per act Riparian	-	Totals					
			Buffer	Criteria						
		Plot #	Stems ¹	Met?						
		0001	769	Yes						
		0001	647	Yes						
		0002	850	Yes						
		0003	769	Yes						
		0004	405	Yes						
		0006	728	Yes						
		0007	445	Yes						
		0008	688	Yes						
		0009	567	Yes						
		Project Avg		Yes						
Stem Class	characteristi		032	103						

Stem Class characteristics

¹Buffer Stems Native planted hardwood trees. Does NOT include shrubs. No pines. No vines.

²Stream/

Wetland StemsNative planted woody stems. Includes shrubs, does NOT include live stakes. No vines³VolunteersNative woody stems. Not planted. No vines.

⁴Total Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

	Table 8 - CVS Metadata
Oakley Cross	sroads Stream and Buffer Restoration - EEP #273
Report Prepared By	Amber Coleman
Date Prepared	10/10/2012 15:00
database name	STantec_Oakley_2012cvs-eep-entrytool-v2.3.1.mdb
database location	U:\175613016\project\site_data\vegetation
computer name	COLEMANA-LT
file size	59727872
DESCRIPTION OF WORKSHEETS I	
	Description of database file, the report worksheets, and a
Metadata	summary of project(s) and project data.
	Each project is listed with its PLANTED stems per acre, for each
Proj, planted	year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year.
	This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
	List of plots surveyed with location and summary data (live
Plots	stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of
Damage	occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for
Planted Stems by Plot and Spp	each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species
	(planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
· · ·	
PROJECT SUMMARY	·
Project Code	273
project Name	Oakley Crossroads (G)
Description	Stream and Wetland Restoration
River Basin	Tar-Pamlico
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	9

															Tab	ole 9. C	VS Stei	n Coun	t Total	and Plai	nted by F	Plot an	nd Speci	es												
				EEP Project Code 273. Project Name: Oakley Crossroads																																
													Cu	rrent Plot	Data (I	MY2 20	012)															Anr	nual M	eans		
			E273-01-	0001	E2	73-01-0	002	E2	73-01-0	003	E2	73-01-	0004	E273	3-01-00	05	E27	73-01-0	006	E27	/3-01-00	07	E27	3-01-0008		E273-	-01-00	09	Μ	Y2 (201	12)	М	Y1 (20	11)	М	YO (2011)
Scientific Name	Common Name	Species Type	PnoLS P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS I	P-all	т	PnoLS	P-all	т	PnoLS	P-all T	г	PnoLS	P-all T	Pn	noLS P-	-all	т	PnoLS	P-all	т	PnoLS	P-all	T	PnoLS	P-all T
Acer rubrum var. rubrum	red maple	Tree		1	1		108			7	,					2			21			1						7			147					
Alnus serrulata	hazel alder	Shrub					4																								4					
Cornus amomum	silky dogwood	Shrub																										2			2					
Eubotrys racemosa	swamp doghobble	Shrub																														1	1	1 1	. 1	1
Fraxinus pennsylvanica	green ash	Tree	4 4	4 4	1			4	4	4	L 5	5	5	5			4	4	4							5	5	5	22	22	22	13	13	3 13	13	13 13
Liquidambar styraciflua	sweetgum	Tree		1	1		11						-	5														16			33				\square	
Magnolia virginiana	sweetbay	Tree	1	1 1	1						1		1	1			1	1	1										3	3	3	3	3	3 3	3	3 3
Morella cerifera	wax myrtle	shrub	2	2 2	2						1		1	1															3	3	3	3	3	3 3	3	3 *
Nyssa biflora	swamp tupelo	Tree			7	7	7				1									2	2	2							9	9	9	1	1	1	. 1	1
Nyssa sylvatica	blackgum	Tree	1	1 1	1			4	4	4	4 3	:	3	3 1	1	1	4	4	4										13	13	13	2	2	2 2	. 2	2
	American sycamore	Tree	5	5 5	5			7	7	7	΄ 6	5	6	5			4	4	4	2	2	2				4	4	4	28	28	28	14	14	14	14	14 14
Quercus	oak	Tree																														2	2	2 2	. 7	7
Quercus falcata	southern red oak	Tree	8	8 8	3			4	4	4	4 4	L .	4 4	4 1	1	1	3	3	3				5	5	5	5	5	5	30	30	30	10	10	0 10	12	12 12
Quercus lyrata	overcup oak	Tree			5	5	5							1	1	1	1	1	1										7	7	7	7	7	7 7	4	4
Quercus michauxii	swamp chestnut oak	Tree			2	2	2							3	3	3				1	1	1							6	6	6	7	7	77	9	9 '
Quercus nigra	water oak	Tree						2	2	2							1	1	1				11	11	11				14	14	14	13	13	3 13	7	7
Quercus pagoda	cherrybark oak	Tree			1	1	. 1													1	1	1	1	1	1				3	3	3	2	2	2 2		
Quercus phellos	willow oak	Tree			1	1	1							4	4	4				5	5	5							10	10	10	12	12	2 12	16	16 16
Quercus rubra	northern red oak	Tree																										1			1					· · · · ·
Sambucus canadensis	Common Elderberry	Shrub					1									2															3					
Toxicodendron radicans	eastern poison ivy	Vine																										1			1					
Unknown		Shrub or Tree																																	1	1
		Stem count	21 2	1 23	3 16	16	140	21	21	28	20) 2	0 2	5 10	10	14	18	18	39	11	11	12	17	17	17	14	14	41	148	148	339	90	90) 90	93	93 93
		size (ares)	1																																	
		size (ACRES)	0.02	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02																																
		Species count	6		3 5	5	9	5	5	6	6	5	6	7 5	5	7	7	7	8	5	5	6	3	3	3	3	3	8	12	12	19	14	14	14	14	
Totals		Stems per ACRE	849.8 849.	8 930.8	3 647.5	647.5	5666	849.8	849.8	1133	809.4	809.	4 101	2 404.7	404.7	566.6	728.4	728.4	1578	445.2	445.2	485.6	688	688	688 5	66.6 5	566.6	1659	665.5	665.5	1524	404.7	404.7		418.2	418.2 418.2
		Stem count	19 1	9 21	1 16	16	135	21	21	28	19	1	9 2	4 10	10	12	18	18	39	11	11	12	17	17	17	14	14	38	145	145	326	86	86	6 86	88	88 88
		size (ares)	13 1			1			1		1	1	- <u> </u>		1			1			1			1		1	1			9			9			9
		size (ACRES)	0.02			0.02			0.02			0.02		1	0.02			0.02			0.02			0.02		(0.02			0.22			0.22			0.22
Riparian Buffer Success		Species count	5	5 7	7 5	5	7	5	5	F	5 5	5	5	5 5	5	6	7	7	8	5	5	6	3	3	3	3	3	6	11	11	14	12	-	-	11	-
Criteria		Stems per ACRE	768.9 768	9 849.8	647.5	647.5	5463	849.8	849.8	1133	768.9	768.	9 971.	2 404.7	404.7	485.6	728.4	728.4	1578	445.2	445.2	485.6	688	688	688 5	66.6 5	566.6	1538	652	652			386.7	_		395.7 395.7

*Bolded hardwood trees are counted toward riparian buffer success criteria.

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

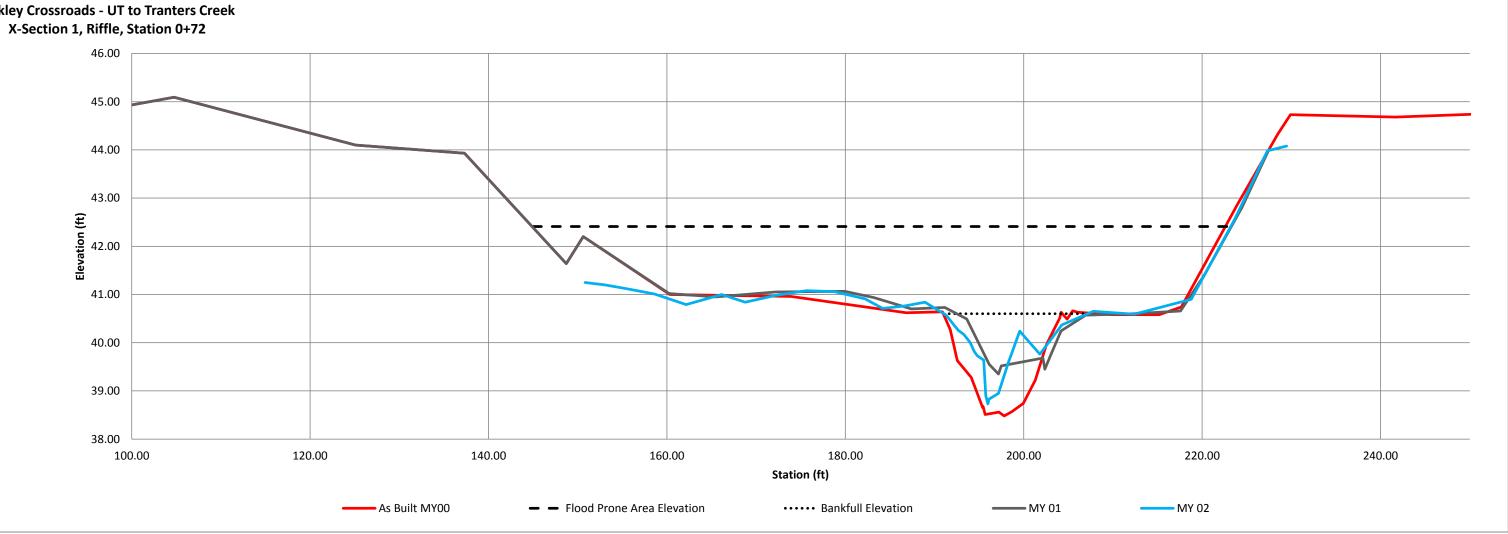
P-all = All planted stems including livestakes

T = All planted and natural recruit stems including livestakes

Total includes natural recruit stems

Appendix D. Stream Survey Data

Figures 3a-j	- Cross-Sections with Annual Overlays
Figure 4	- Longitudinal Profiles with Annual Overlays
Table 10a,b.	– Baseline – Stream Data Summary
Table 11a.	- Monitoring - Cross-section Morphology Data
Table 11b.	– Monitoring – Stream Reach Morphology Data


River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-1, Riffle, STA 0+72
Drainage Area(sq. mi.)	1.59
Date	10/10/2012
Field Crew	T. Taylor, A. Baldwin

М	Y 00	М	Y 01	MY 02			
Station	Elevation	Station	Elevation	Station	Elevation		
12.21	49.05	12.21	49.05	150.82	41.25		
19.33	48.29	19.33	48.29	153.07	41.20		
28.16	46.74	28.16	46.74	155.79	41.11		
35.77	46.38	35.77	46.38	158.62	41.01		
47.80	45.82	47.80	45.82	162.14	40.79		
59.77	45.48	59.77	45.48	166.15	41.00		
74.68	45.23	74.68	45.23	168.77	40.84		
81.30	45.02	81.30	45.02	172.16	40.98		
87.17	45.62	87.17	45.62	175.62	41.08		
93.57	44.59	93.57	44.59	178.75	41.06		
98.13	44.87	98.13	44.87	182.20	40.91		
104.75	45.09	104.75	45.09	184.20	40.71		
125.09	44.10	125.09	44.10	186.59	40.76		
137.30	43.93	137.30	43.93	188.93	40.84		
148.71	41.64	148.71	41.64	191.29	40.57		
150.62	42.20	150.62	42.20	192.64	40.26		
160.31	41.00	160.25	41.02	193.29	40.17		
173.90	40.96	165.47	40.95	194.00	40.00		
186.83	40.62	172.19	41.05	194.43	39.82		
190.89	40.64	179.93	41.07	194.80	39.73		
191.77	40.27	183.19	40.94	195.51	39.64		
192.56	39.63	187.40	40.70	195.74	38.90		

MY00	MY01	MY02
40.63	40.72	40.57
18.33	8.37	9.77
20.80	12.39	15.49
42.78	41.63	42.41
80.66	65.65	78.50
2.15	1.14	1.84
0.88	0.68	0.63
23.64	18.22	24.59
3.88	5.30	5.07
1.00	1.00	1.00
C	С	C
	40.63 18.33 20.80 42.78 80.66 2.15 0.88 23.64 3.88	40.6340.7218.338.3720.8012.3942.7841.6380.6665.652.151.140.880.6823.6418.223.885.30

Oakley Crossroads - UT to Tranters Creek

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-2, Riffle, STA 6+17
Drainage Area(sq. mi.)	1.59
Date	10/10/2012
Field Crew	T. Taylor, A. Baldwin

М	Y 00	М	Y 01	MY	′ 02
Station	Elevation	Station	Elevation	Station	Elevation
12.76	46.91	12.76	46.91	169.00	42.10
33.99	44.63	33.99	44.63	169.98	41.79
54.24	44.37	54.24	44.37	172.32	41.46
72.47	43.91	72.47	43.91	175.26	41.16
92.77	43.54	92.77	43.54	178.46	40.99
110.68	43.14	110.68	43.14	181.16	40.77
136.32	43.27	136.32	43.27	184.02	40.67
153.53	42.83	153.53	42.83	187.28	40.50
168.42	42.08	168.42	42.08	190.92	40.49
169.10	42.69	169.10	42.69	193.78	40.41
175.71	41.04	174.60	41.30	196.48	40.49
193.21	40.52	183.93	40.80	199.93	40.52
210.45	40.43	193.68	40.52	205.00	40.50
219.41	40.32	208.61	40.41	208.82	40.45
223.60	40.35	217.46	40.30	213.63	40.35
226.57	40.33	226.67	40.33	217.51	40.31
226.69	40.37	229.04	39.32	221.63	40.32
227.04	40.30	230.82	38.62	224.41	40.38
228.42	39.64	231.63	38.04	226.25	40.26
229.95	38.99	232.76	37.70	227.67	39.77
231.78	38.21	233.53	37.92	228.58	39.49
232.29	38.09	235.12	38.52	229.56	39.23
232.51	37,94	237.92	39.70	229.96	39,13

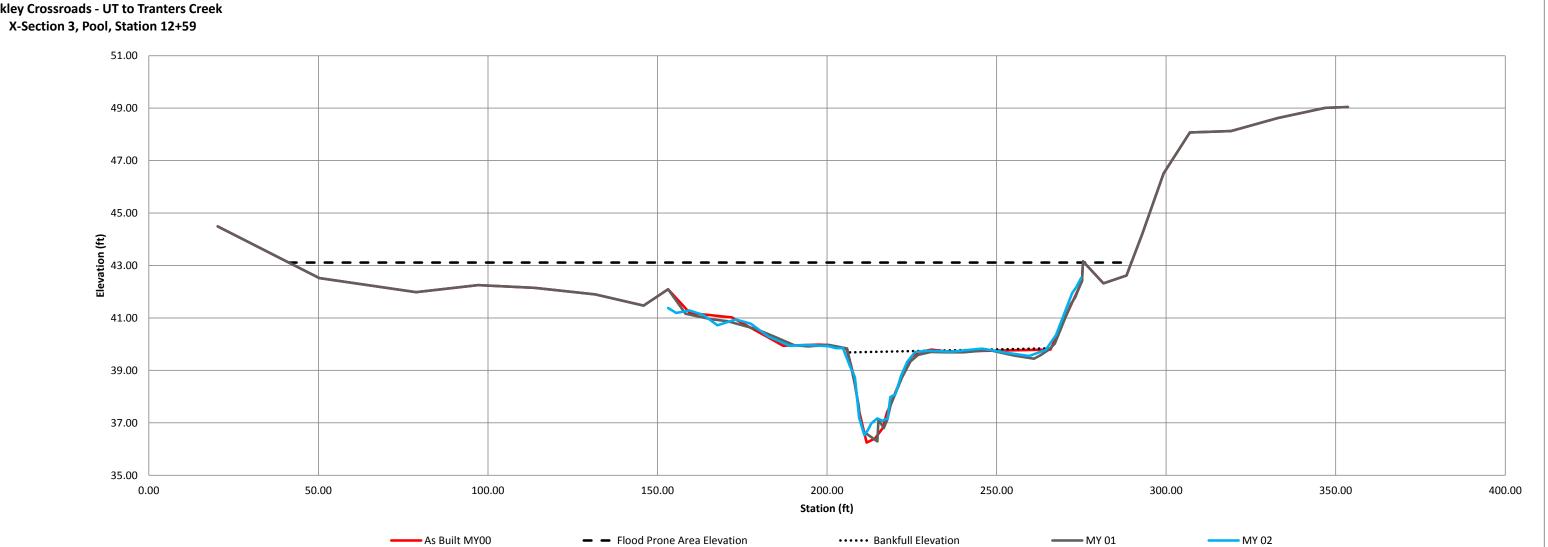
SUMARY DATA	MY00	MY01	MY02
Bankfull Elevation	40.35	40.38	40.38
Bankfull Cross-Sectional Area	18.16	17.88	18.17
Bankfull Width	16.60	13.16	15.09
Flood Prone Area Elevation	42.89	43.06	42.99
Flood Prone Width	124.27	124.27	124.27
Max Depth at Bankfull	2.54	2.68	2.61
Mean Depth at Bankfull	1.09	1.37	1.20
W/D Ratio	15.23	9.61	12.58
Entrenchment Ratio	7.49	9.44	8.24
Bank Height Ratio	1.00	1.00	1.00
Stream Type	С	С	С

Oakley Crossroads - UT to Tranters Creek

X-Section 2, Riffle, Station 6+17

Sta. 6+17 Looking Downstream

		ſ		
	/	/		
	/			
260).00	280).00	300.00
-	MY 02			

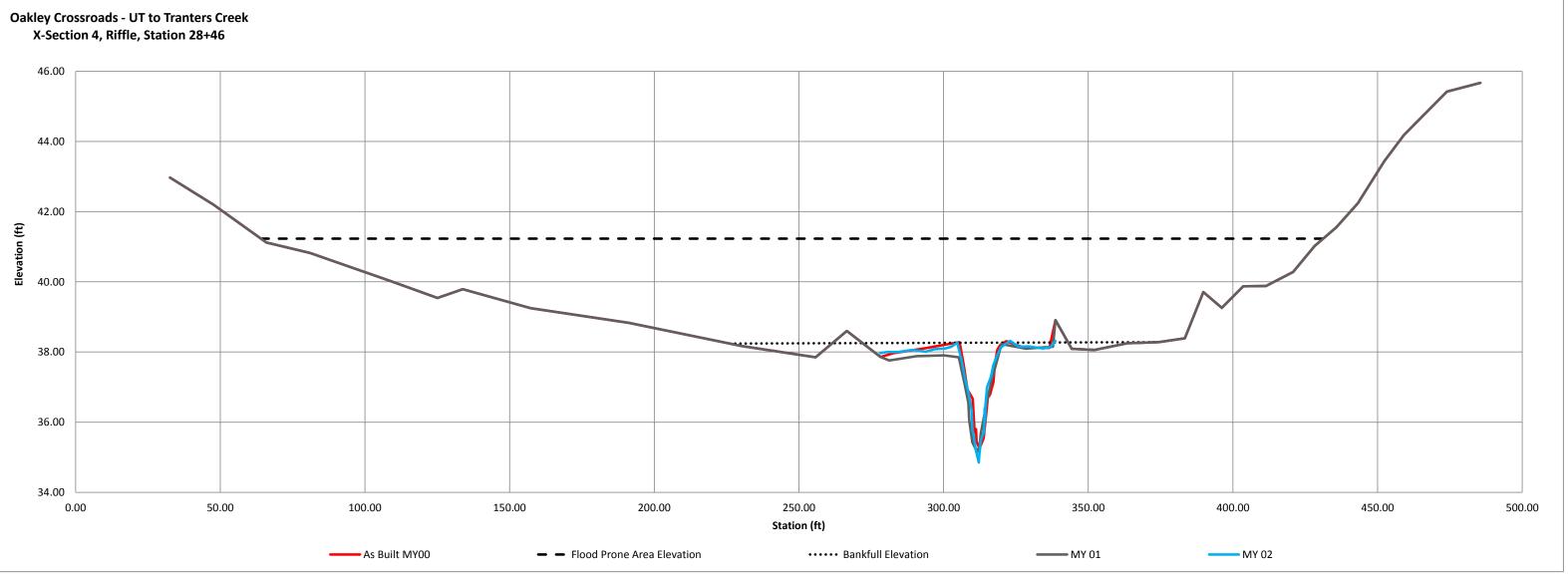

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-3, Pool, STA 12+59
Drainage Area(sq. mi.)	1.59
Date	10/10/2012
Field Crew	T. Taylor, A. Baldwin

М	Y 00	M	(01	M١	′ 02
Station	Elevation	Station	Elevation	Station	Elevation
20.32	44.49	20.32	44.49	153.13	41.38
50.25	42.52	50.25	42.52	155.51	41.19
78.82	41.98	78.82	41.98	159.37	41.29
97.11	42.25	97.11	42.25	163.57	41.11
113.72	42.15	113.72	42.15	167.64	40.72
131.64	41.90	131.64	41.90	173.09	40.94
145.91	41.47	145.91	41.47	177.54	40.78
153.13	42.09	153.13	42.09	182.58	40.30
159.54	41.19	158.28	41.16	185.77	40.12
171.94	41.02	166.00	40.94	188.89	39.94
180.95	40.38	170.52	40.88	194.18	39.97
187.04	39.94	179.13	40.57	200.51	39.92
197.51	39.98	184.61	40.28	202.61	39.85
200.36	39.97	190.41	39.96	204.72	39.85
205.21	39.84	194.41	39.92	206.71	39.17
205.63	39.82	200.59	39.97	207.89	38.84
205.93	39.76	205.91	39.83	208.23	38.73
207.79	38.83	208.18	38.48	209.46	37.19
209.56	37.40	209.36	37.63	210.59	36.70
210.71	36.78	209.67	37.18	211.02	36.53
211.70	36.25	210.78	36.66	212.13	36.75
214.13	36.40	214.84	36.29	213.04	36.98

SUMARY DATA	MY00	MY01	MY02
Bankfull Elevation	39.68	39.70	39.70
Bankfull Cross-Sectional Area	36.86	37.87	34.50
Bankfull Width	20.58	24.45	20.80
Flood Prone Area Elevation	43.11	43.11	42.87
Flood Prone Width	248.46	248.07	244.10
Max Depth at Bankfull	3.43	3.41	3.17
Mean Depth at Bankfull	1.79	1.55	1.66
W/D Ratio	11.50	15.77	12.53
Entrenchment Ratio	12.07	10.15	11.74
Bank Height Ratio	1.00	1.00	1.00
Stream Type	С	C	C

Oakley Crossroads - UT to Tranters Creek

Sta. 12+59 Looking Downstream


— MY 02

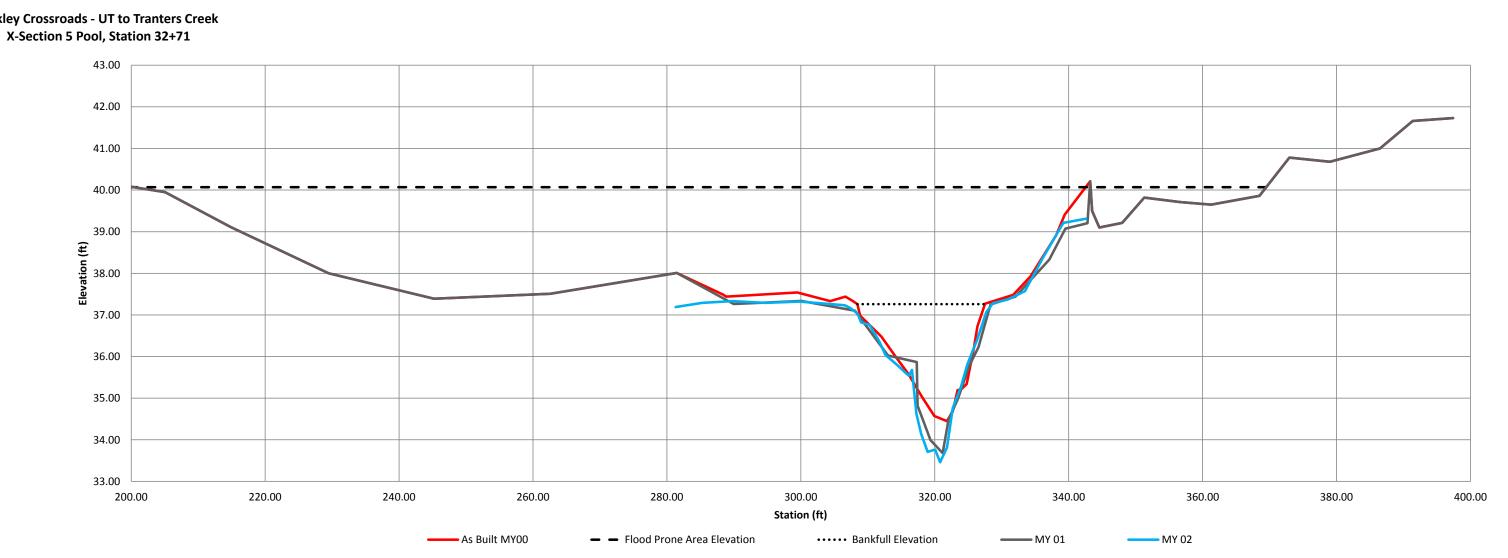
River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-4, Riffle, STA 28+46
Drainage Area(sq. mi.)	1.59
Date	10/10/2012
Field Crew	T. Taylor, A. Baldwin

Flaughtan		/ 01	MY 02	
Elevation	Station	Elevation	Station	Elevation
42.97	32.58	42.97	278.00	37.97
42.20	47.64	42.20	280.52	38.00
41.12	65.92	41.12	284.26	38.00
40.82	81.03	40.82	289.18	38.06
40.61	88.43	40.61	293.86	38.01
40.02	108.82	40.02	296.90	38.08
39.54	125.06	39.54	300.54	38.10
39.79	133.82	39.79	302.64	38.15
39.25	157.24	39.25	304.70	38.27
38.83	191.12	38.83	306.16	37.79
38.17	230.32	38.17	307.54	37.21
37.85	255.76	37.85	308.62	36.83
38.60	266.56	38.60	309.70	36.33
37.86	278.21	37.86	309.97	35.76
37.97	281.24	37.759	310.39	35.64
38.11	290.68	37.881	311.02	35.24
38.28	300.11	37.906	312.16	34.85
38.25	305.26	37.848	312.3	35.04
37.65	307.23	37.095	312.89	35.48
36.93	308.54	36.55	314.04	35.74
36.67	308.85	36.062	314.17	36.4
	42.20 41.12 40.82 40.61 40.02 39.54 39.79 39.25 38.83 38.17 37.85 38.60 37.86 37.97 38.11 38.28 38.25 37.65 36.93	42.2047.6441.1265.9240.8281.0340.6188.4340.02108.8239.54125.0639.79133.8239.25157.2438.83191.1238.17230.3237.85255.7638.60266.5637.86278.2137.97281.2438.11290.6838.28300.1138.25305.2637.65307.2336.93308.54	42.2047.6442.2041.1265.9241.1240.8281.0340.8240.6188.4340.6140.02108.8240.0239.54125.0639.5439.79133.8239.7939.25157.2439.2538.83191.1238.8338.17230.3238.1737.85255.7637.8538.60266.5638.6037.86278.2137.8637.97281.2437.75938.11290.6837.84138.25305.2637.84837.65307.2337.09536.93308.5436.55	42.2047.6442.20280.5241.1265.9241.12284.2640.8281.0340.82289.1840.6188.4340.61293.8640.02108.8240.02296.9039.54125.0639.54300.5439.79133.8239.79302.6439.25157.2439.25304.7038.83191.1238.83306.1638.17230.3238.17307.5437.85255.7637.85308.6238.60266.5638.60309.7037.86278.2137.86309.9737.97281.2437.759310.3938.11290.6837.881311.0238.28300.1137.906312.1638.25305.2637.848312.337.65307.2337.095312.8936.93308.5436.55314.04

SUMARY DATA	MY00	MY01	MY02
Bankfull Elevation	38.24	37.85	38.13
Bankfull Cross-Sectional Area	20.90	18.22	19.85
Bankfull Width	14.64	13.70	14.70
Flood Prone Area Elevation	41.23	40.54	41.41
Flood Prone Width	367.14	332.68	367.00
Max Depth at Bankfull	2.99	2.69	3.28
Mean Depth at Bankfull	1.43	1.33	1.35
W/D Ratio	10.24	10.30	10.89
Entrenchment Ratio	25.08	24.28	24.97
Bank Height Ratio	1.00	1.00	1.00
Stream Type	C	C	E

Sta. 28+46 Looking Downstream

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-5, Pool, STA 32+71
Drainage Area(sq. mi.)	1.59
Date	9/1/2011
Field Crew	N. Jean, B.Mazzochi, A. Baldwin

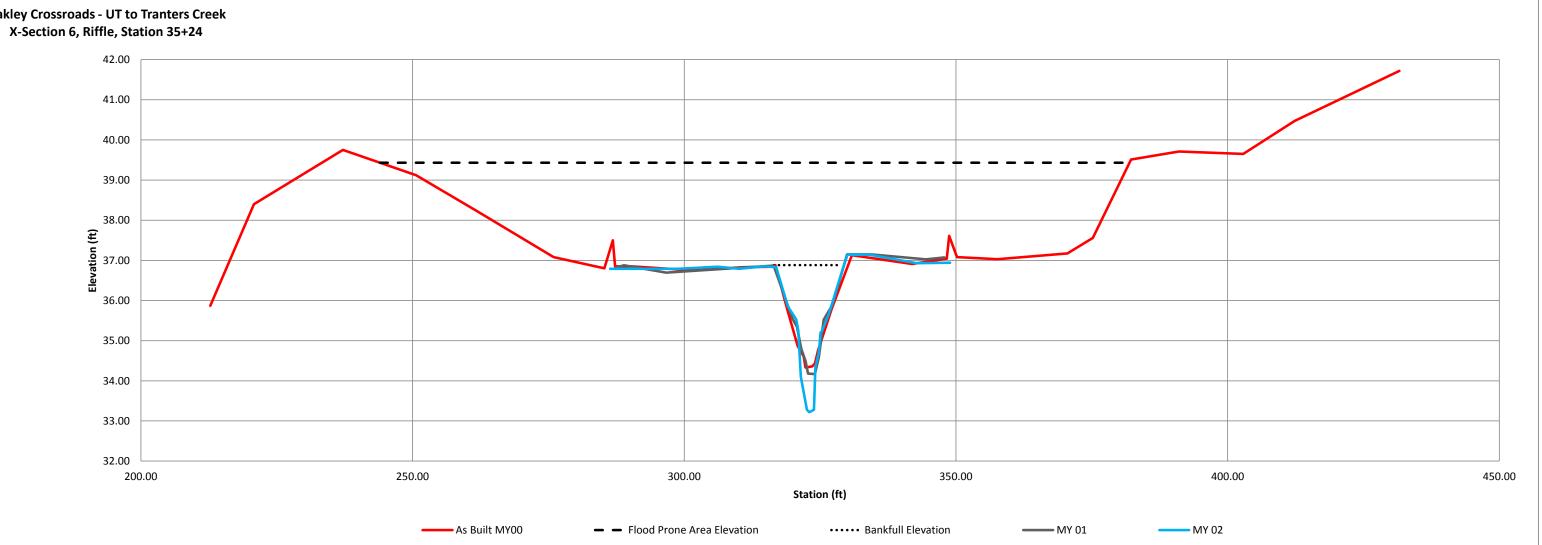

Μ	IY 00	M	Y 01	M	(02
Station	Elevation	Station	Elevation	Station	Elevation
26.15	42.13	26.15	42.13	281.30	37.19
36.87	42.19	36.87	42.19	285.24	37.29
68.22	41.81	68.22	41.81	289.79	37.33
85.37	36.59	85.37	36.59	294.67	37.29
90.80	34.92	90.80	34.92	299.78	37.32
176.23	35.02	176.23	35.02	303.71	37.27
177.81	35.70	177.81	35.70	306.55	37.23
185.44	38.11	185.44	38.11	307.36	37.17
195.27	40.20	195.27	40.20	308.48	37.03
205.06	39.95	205.06	39.95	309.01	36.82
214.85	39.11	214.85	39.11	310.26	36.76
229.47	38.00	229.47	38.00	311.69	36.37
245.21	37.39	245.21	37.39	312.62	36.04
262.60	37.51	262.60	37.51	314.52	35.78
281.47	38.01	281.47	38.01	315.69	35.60
288.37	37.49	289.99	37.262	316.15	35.54
288.85	37.44	300.08	37.334	316.61	35.68
299.46	37.54	308.08	37.1	317.26	34.62
304.38	37.33	313.02	36.025	317.96	34.15
306.65	37.44	317.31	35.866	318.95	33.71
307.72	37.34	317.44	34.823	320.06	33.763
308.44	37.26	319.38	33.992	320.8	33.461
208 86	36.08	271 12	22 670	271 87	22 21/

SUMARY DATA	MY00	MY01*	MY02
Bankfull Elevation	37.26	37.33	37.23
Bankfull Cross-Sectional Area	29.47	35.63	34.74
Bankfull Width	19.06	29.71	23.49
Flood Prone Area Elevation	40.07	40.98	41.00
Flood Prone Width	289.16	315.10	301.17
Max Depth at Bankfull	2.81	3.65	3.77
Mean Depth at Bankfull	1.55	1.20	1.48
W/D Ratio	12.30	24.76	15.87
Entrenchment Ratio	15.17	10.61	12.82
Bank Height Ratio	1.00	1.00	1.00
Stream Type	C	C	C

*Floodprone width adjusted to not include adjacent farm pond.

Oakley Crossroads - UT to Tranters Creek

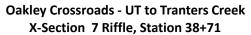
Sta. 32+71 Looking Downstream

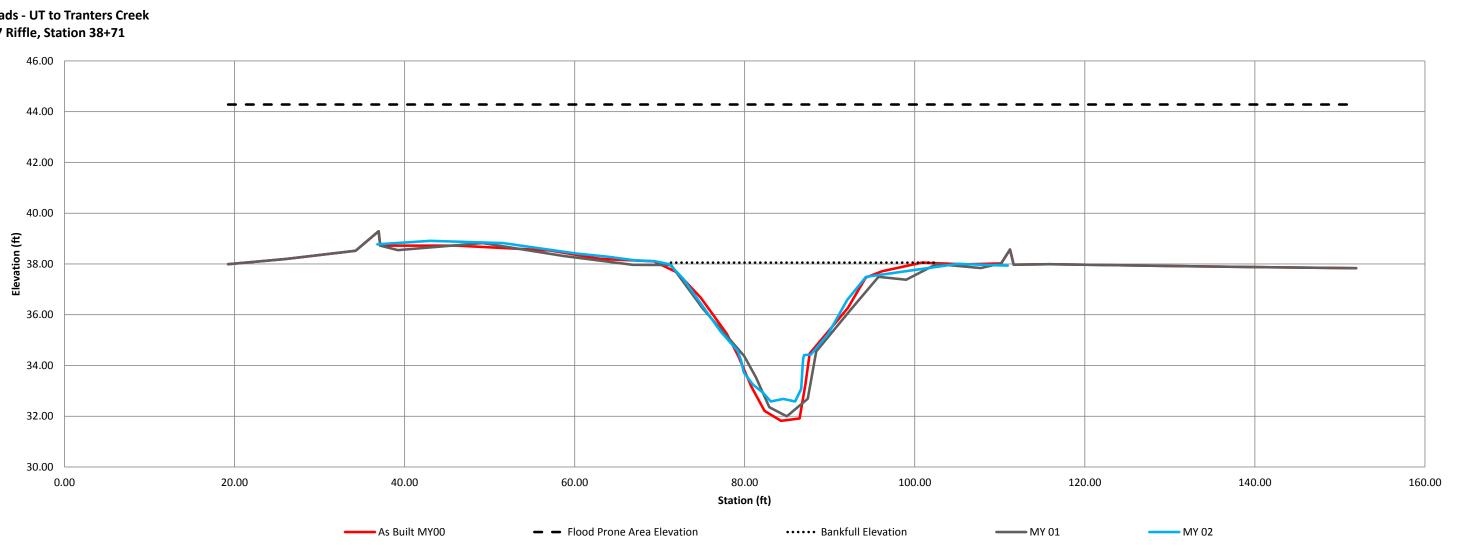

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-6, Riffle, STA 35+24
Drainage Area(sq. mi.)	1.59
Date	10/10/2012
Field Crew	T. Taylor, A. Baldwin

M	Y 00	MY 01		M	′ 02
Station	Elevation	Station	Elevation	Station	Elevation
212.76	35.87	212.76	35.87	286.34	36.79
220.80	38.40	220.80	38.40	298.82	36.79
237.17	39.75	237.17	39.75	306.18	36.84
250.63	39.12	250.63	39.12	310.11	36.79
261.67	38.24	261.67	38.24	314.68	36.85
275.95	37.08	275.95	37.08	316.91	36.83
285.28	36.80	285.28	36.80	319.06	35.85
286.84	37.50	286.84	37.50	320.59	35.53
287.26	36.85	287.26	36.85	320.98	35.25
290.35	36.85	287.43	36.82	321.44	34.10
301.91	36.75	288.9	36.88	322.57	33.28
310.76	36.83	296.65	36.69	323.02	33.22
316.51	36.84	316.45	36.87	323.87	33.28
316.76	36.88	319.93	35.55	324.13	34.34
318.89	35.81	320.76	35.34	324.78	34.72
320.87	34.87	321.54	34.79	325.06	35.20
321.98	34.60	322.35	34.49	325.33	35.24
322.30	34.33	322.78	34.18	326.57	35.65
323.55	34.36	324.04	34.17	328.9	36.67
324.04	34.43	324.79	34.60	330.01	37.14
324.63	34.76	325.66	35.52	334.1	37.14
327.11	35.78	327.28	35.89	342.78	36.93
330.86	37.13	329.96	37.15	348.93	36.94

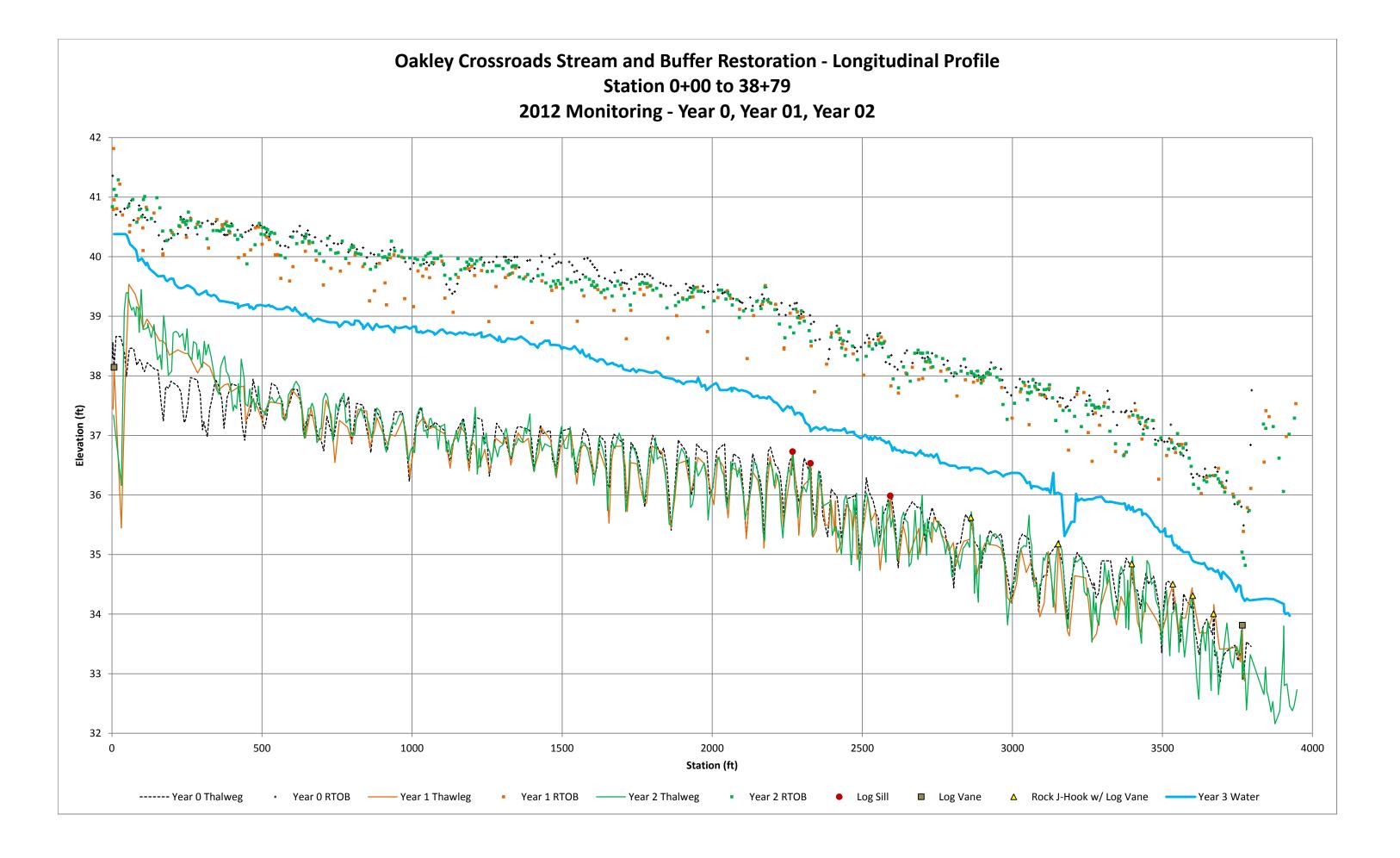
SUMARY DATA	MY00	MY01	MY02
Bankfull Elevation	36.88	36.87	36.83
Bankfull Cross-Sectional Area	18.91	17.43	19.10
Bankfull Width	17.17	12.92	12.37
Flood Prone Area Elevation	39.43	39.57	40.44
Flood Prone Width	158.46	166.08	160.00
Max Depth at Bankfull	2.55	2.70	3.61
Mean Depth at Bankfull	1.10	1.35	1.54
W/D Ratio	15.61	9.59	8.03
Entrenchment Ratio	9.23	12.82	12.93
Bank Height Ratio	1.00	0.95	1.00
Stream Type	С	C	E

Oakley Crossroads - UT to Tranters Creek


Sta. 35+24 Looking Downstream


River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-7, Riffle, STA 38+71
Drainage Area(sq. mi.)	1.59
Date	10/10/2012
Field Crew	T. Taylor, A. Baldwin

M	Y 00	М	Y 01	MY	<u>′ 02</u>
Station	Elevation	Station	Elevation	Station	Elevation
19.24	37.99	19.24	37.99	36.80	38.77
26.11	38.20	26.11	38.20	43.00	38.91
34.24	38.52	34.24	38.52	51.58	38.82
36.95	39.29	36.95	39.29	60.15	38.41
37.14	38.72	37.14	38.72	64.02	38.28
39.57	38.72	39.21	38.544	66.96	38.15
46.18	38.72	49.19	38.823	69.41	38.11
57.09	38.53	58.73	38.308	71.14	37.99
63.06	38.20	66.87	37.967	72.73	37.43
66.76	38.14	71.32	37.96	77.16	35.34
69.33	38.10	75.06	36.251	79.17	34.57
72.02	37.67	79.92	34.376	79.57	34.2
74.83	36.67	81.32	33.533	79.89	33.73
77.89	35.25	82.9	32.353	80.99	33.24
79.27	34.35	84.95	31.993	82.14	32.93
80.79	33.16	87.42	32.686	83.07	32.58
82.34	32.21	88.42	34.553	84.53	32.68
84.27	31.82	92.45	36.186	85.93	32.58
86.46	31.91	95.74	37.49	86.64	33.08
87.16	33.28	98.99	37.375	86.87	34.26
87.65	34.47	102.57	37.996	86.98	34.41
ደባ 37	25 16	107 75	37 837	<u> </u>	27 73


SUMARY DATA	MY00*	MY01	MY02
Bankfull Elevation	38.05	38.00	38.00
Bankfull Cross-Sectional Area	75.91	77.93	71.24
Bankfull Width	31.46	36.52	34.07
Flood Prone Area Elevation	44.28	44.01	43.42
Flood Prone Width	132.69	132.69	>200
Max Depth at Bankfull	6.23	6.01	5.42
Mean Depth at Bankfull	2.41	2.13	2.09
W/D Ratio	13.05	17.15	16.30
Entrenchment Ratio	4.22	3.63	5.87
Bank Height Ratio	1.00	1.00	1.00
Stream Type	C	С	C

* REVISED X-SEC DATA

												ita Sun													
					eam a	nd Buff				EP Pro	oject N					: Main				1					
Parameter	Gauge ²	Reg	ional C	urve		Pre-E	xisting	Cond	ition			Refere	nce R	each(es	s) Data			Design	1		Мо	nitorin	g Base	line	
									1	1	1									1		1			
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD^5	n
Bankfull Width (ft)					-	10.40	-	-	-	4	7.80	11.20	-	14.60	-	2	-	12.3	-	14.64	17.31	-	20.82	-	4
Floodprone Width (ft)					-	15.00	-	-	-	4	120.00	126.50	-	133.00	-	2	-	240.0	-	80.66	182.63	-	367.14	-	4
Bankfull Mean Depth (ft)					-	1.80	-	-	-	4	0.70	1.15	-	1.60	-	2	-	1.5	-	0.88	1.13	-	1.43	-	4
¹ Bankfull Max Depth (ft)					-	2.70	-	-	-	4	1.60	1.85	-	2.10	-	2	-	2.4	-	2.15	2.56	-	2.99	-	4
Bankfull Cross Sectional Area (ft ²)					-	19.00	-	-	-	4	9.50	11.05	-	12.60	-	2	-	19.0	-	18.16	19.08	-	20.90	-	4
Width/Depth Ratio					-	5.70	-	-	-	4	4.80	13.60	-	22.40	-	2	-	- 8.0 -			16.19	-	23.66	-	4
Entrenchment Ratio					-	1.40	-	-	-	4	8.20	12.65	-	17.10	-	2	-	- 19.5 -			10.55	-	21.21	-	4
¹ Bank Height Ratio					-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	•	-
Profile																									
Riffle Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	24.83	35.98	-	53.02		4
Riffle Slope (ft/ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.002	0.003	-	0.006		4
Pool Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20.47	33.67	-	44.45		2
Pool Max depth (ft)					-	-	-	-	-	-	1.7	2.3	-	2.9	-	2	-	4	-	2.81	3.12	-	3.43		2
Pool Spacing (ft)					-	-	-	-	-	-	5	27	35	67	-	4	43	52.5	62	43.4	64.26	-	94.03		2
Pattern									-																
Channel Beltwidth (ft)					-	-	-	-	I -	-	45	72.5	-	100		2	62	74.0	86	38.56	55.94	-	86.18	-	48.00
Radius of Curvature (ft)					-	-	-	-	-	-	8	12.8	14	21		4	22	27.0	31	19.24	27.81	-	36.28	-	56.00
Rc:Bankfull width (ft/ft)					-	-	-	-	-	-	0.5	1.2	1.4	1.8		4	1.8	2.2	2.5	1.11	1.61	-	2.10	-	56.00
Meander Wavelength (ft)					-	-	-	-	-	-	17	75	100	156		4	86	111	135	85.46	103.92	-	118.61	-	48.00
Meander Width Ratio					-	-	-	-	-	-	5.8	6.3	-	6.8		2	5	6.0	7	2.23	3.23	-	4.98	-	48.00
																		•				•			•
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							0.2	2			I							0.14		1		0.0)93		
Max part size (mm) mobilized at bankfull							-											-				2	5		
Unit Stream Power (transport capacity)								-										0.47					10		
lbs/ft/s per unit width ⁶							0.2	5										0.17				0.	16		
Additional Reach Parameters																									
Rosgen Classification							G5	с			I		C5	, E5				E5		1		C	24		
Bankfull Velocity (fps)							1.9	9										1.7				1.	65		
Bankfull Discharge (cfs)							30)														_	_		
Valley length (ft)							-							-											
Channel Thalweg length (ft)							-							-				-				39	50		
Sinuosity (ft)							1.0)1					1.	18				1.28				1	.4		
Water Surface Slope (Channel) (ft/ft)							0.00	18						002				0.0014				0.00)146		
BF slope (ft/ft)														-				-					0144		
³ Bankfull Floodplain Area (acres)							-							-											
⁴ % of Reach with Eroding Banks							-				1				_										
Channel Stability or Habitat Metric							-				1			-											
Biological or Other							-				1			-											
Shadad anlla indiants that there will turningly not be filled in																									

Shaded cells indicate that these will typically not be filled in.

1 = 1 motive train that we introduce the interval of the bankfull floodplain area in acres, which should be the area from the top of bank to th

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3; 6. Units changed from W/m² to reflect those provided in original design.

Table 10b. Base Oakley Cros																					5)						
Parameter	F	Pre-E	xisti	ing	Con	ditio	on		Refe	rence	Read	ch(es)	Data				[Desig	n				As-bu	ilt/Ba	selin	e	
¹ Ri% / Ru% / P% / G% / S%	-	0	1 -	0	0			-	-	-		-			-	-	-	-	-		52	-	48		-		
¹ SC% / Sa% / G% / C% / B% / Be%	_	33	67	0	0	0		0	100	0	0	0	0								02						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.14	0.26	0.5	4.4	7.3	-	30	0.3	0.4	0.5	0.9	1.2	-	-													
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	-	-	-	-	-			i.	-	-	1	-									÷.	-	-	1	-		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	-	-	-	-				-	-	-	-										-	-	-	-			

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section survey, and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

								g Data ream a																											
	C	ross S							ross Se											9, Poolj			ross S				6, Riffl	e)	0	Cross S	ection	5 (ST/	4 32+7 1	i, Pool)
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY⊦
Record elevation (datum) used		40.49	40.57						40.38	40.38						39.70	39.70						37.85	38.13						37.33	37.23	<u> </u>	<u> </u>	\square	
Bankfull Width (ft)	20.82	12.39	15.49					16.60	13.16	15.09					20.58	24.38	20.80					14.64	13.70	14.70					19.06	29.71	23.49			\square	
Floodprone Width (ft)	80.66	65.65	78.50					124.27	131.28	128.50					248.08	120.86	244.10					367.14	332.68	367.00)				289.16	315.10	301.17			\square	
Bankfull Mean Depth (ft)	0.88	0.68	0.63					1.09	1.37	1.20					1.79	1.55	1.66					1.43	1.33	1.35					1.55	1.20	1.48				
Bankfull Max Depth (ft)	2.15	1.14	1.84					2.54	2.68	2.61					3.43	3.41	3.17					2.99	2.69	3.28					2.81	3.65			\square'	\square'	
Bankfull Cross Sectional Area (ft ²)	18.33	8.37	9.77					18.16	17.88	18.17					36.86	37.87	34.50					20.90	18.22	19.85					29.47	35.63	34.74	1 /	'	1 '	1
Bankfull Width/Depth Ratio	23.66	18.22	24.59					15.23	9.61	12.58					11.50	15.73	12.53					10.24	10.30	10.89					12.30	24.76	15.87			\square	
Bankfull Entrenchment Ratio	3.88	5.30	5.07					7.49	7.51	8.52					12.05	4.96	11.74					25.08	24.28	24.97					15.17	10.61	12.82		\square	\square'	
Bankfull Bank Height Ratio	1.00	0.95	1.00					1.00	1.00	1.00					1.00	0.95	1.00					1.00	0.90	1.00					1.00	0.98	1.00			\square	
Cross Sectional Area between end pins (ft ²)																														ſ			\square	\square	1
d50 (mm)																														1					
	С	ross Se	ection	6 (ST <i>A</i>	35+24	4, Riffle	e)	Cr	oss Se	ction 7	' (STA	38+71,	Other	.)		Cr	oss Se	ction 8	3 (Riffle	e)			С	ross S	ection	9 (Poo	ol)			Cre	oss Se	ction 1	0 (Poc))	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY⊣
Record elevation (datum) used		36.87	36.83						38.00	38.00								1	1						1		1								
Bankfull Width (ft)	17.17	12.92	12.37					31.46	36.52	34.07																	1								
Floodprone Width (ft)	158.46	166.08	160.00					132.69	132.69	>200																								\square	
Bankfull Mean Depth (ft)	1.10	1.35	1.54					2.41	2.13	2.09																								\square	
Bankfull Max Depth (ft)	2.55	2.70	3.61					6.23	6.01	5.42																									
Bankfull Cross Sectional Area (ft ²)	18.91	17.43	19.10					75.91	77.93	71.24																									
Bankfull Width/Depth Ratio					1	1	1	13.05	17.15	16.30																									
Bankfull Entrenchment Ratio	9.23	12.82	12.93	1			1	4.22	3.63	5.87																	1								
Bankfull Bank Height Ratio	1.00	0.95	1.00					1.00	1.00	1.00																									
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)					T																														

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

				Oakle			and a	Stroop								am Re						Mair	actor	. (2.0	50 fo	ot)										
Parameter			Bas		y cro	12210		Sirea	m an M			esto				Y-2	0.27	3 - 36	gini	envre		<u>wan</u> Y- 3	ISLEI	1 (3,9	<u>50 le</u>	elj	M	IY- 4					M	Y- 5		
		1			1			1	1	1 - 1 T	-	-		1	1	1 2	1			-				1			-		-			T				
Dimension and Substrate - Riffle only	Min	Mean	Med		SD⁴	n		Mean		Max								n	Min	Mear	n Med	Max	SD ⁴	n	Min	Mean	n Med	d Ma	x SD	4 n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	14.6	17.31	-	20.82	-	4	12.4			13.16				14.4		15.49		4																		
Floodprone Width (ft)	80.7	182.63	3 -	367.14	-	4	65.7	118.7	124	166.1	50.4	4	78.5	183.5	144.3	367	126.9	4																		
Bankfull Mean Depth (ft)	0.9	1.13	-	1.43	-	4	0.7	1.1	1.35	1.37	0.39	4	0.6	1.2	1.275	1.54	0.392	4																		
¹ Bankfull Max Depth (ft)	2.2	2.56	-	2.99	-	4	1.1	2.2	2.68	2.703	0.9	4	1.8	2.8	2.945	3.61	0.783	4																		
Bankfull Cross Sectional Area (ft ²)	18.2	19.08	-	20.9	-	4	8.4	8.4	17.4	17.88	5.37	4	9.8	16.7	18.64	19.85	4.686	4																		
Width/Depth Ratio	10.2	16.19	-	23.66	-	4	9.6	12.5	9.61	18.22	4.98	4	8.0	14.0	11.73	24.587	7.289	4																		
Entrenchment Ratio	4.7	10.55	-	21.21	-	4	5.3	9.2	9.44	12.82	3.77	4	5.1	12.9	10.73	24.966	8.682	4																		
¹ Bank Height Ratio	- 10	-	-	-	-	-	1	1	1	1	0	4	1	1	1	1	0	4																		
Profile																																				
Riffle Length (ft)	24.8	35.98	-	53.02	-	4	24.2	35.2	-	53.1	-	4	20.28	30.8	-	55.2		4																T		
Riffle Slope (ft/ft)	0.002	0.003	-	0.006	-	4	0.002	0.003	-	0.006	; -	4	0.002	0.004	-	0.006		4																		
Pool Length (ft)	20.47	33.67	-	44.45	-	2	21	32.54	-	45.21	-	2	26.76	38.88	-	51		2																		
Pool Max depth (ft)	2.81	3.12	-	3.43	-	2	3.41	3.53	-	3.65	-	2	3.17	3.47	-	3.77		2																		
Pool Spacing (ft)	43.4	64.26	-	94.03	-	2	42.1	65.2	-	95.2	-	2	28.72	64	-	106		33																		
Pattern																																				
Channel Beltwidth (ft)	38.6	55.94	-	86.18	-	48	1	1																												
Radius of Curvature (ft)	19.2	27.81		36.28	-	56																														
Rc:Bankfull width (ft/ft)	1.1	1.61	-	2.1	-	56										Patt	ern data	will not	t typica	ally be co indicate	e signific	unless \ ant shif	visual da fts from	ata, dime baseline	ensional e	data or	r profile	data								
Meander Wavelength (ft)	85.5	103.92	2 -	118.61	-	48															0															
Meander Width Ratio	2.2	3.23	-	4.98	-	48																														
Additional Reach Parameters																																				
Rosgen Classification	n		C4	4,E5					C4	,E5					C4	4,E5																				
Channel Thalweg length (ft))														4	064																				
Sinuosity (ft))		1	1.4					1	.4					1	1.4																				
Water Surface Slope (Channel) (ft/ft))		0.0	0146					0.00)145					0.0	0145																				
BF slope (ft/ft))		0.0	0144					0.00	0139					0.0	0137																				
³ Ri% / Ru% / P% / G% / S%		-	48	-	-		52	-	48	-	-		52	-	48	-	-																	T		
³ SC% / Sa% / G% / C% / B% / Be%																						1												1		
³ d16 / d35 / d50 / d84 / d95 /	/																					1												1		
² % of Reach with Eroding Banks		-		-	-			-	-	-																										
Channel Stability or Habitat Metric							1																													
Biological or Other	r						1																													
Shaded cells indicate that these will typically not be fille															1			1									1			1			1		<u> </u>	

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
 4. = Of value/needed only if the n exceeds 3

Appendix E. Hydrology Data

Table 12- Verification of Bankfull Events

Tat	le 12 - Verification of Bank	full Events	
Oakley Crossroads Str	eam and Buffer Restoration	Project - EEP Project N	o. 273
Date of Data Collection	Date of Occurrence	Method	Photo
September 13, 2011	unknown	Visual observation of wrack lines	n/a
October 4, 2012	unknown	Crest gauge	S9
October 10, 2012	unknown	Visual observation of wrack lines	S8